1 ENERGY STORAGE

- 1.1 A water well is in a location with a mean daily solar radiation of 4.8 hours of sun. The PV powered pump is able to produce 16m³ /day from a depth of 18m.
 - a) Determine the required capacity of the batteries for autonomy of 3 days.
 - b) Determine the required installed PV power.
- 1.2 How much water would have to be pumped to a tank raised 3 meters from the ground in order to be able to recover 1kWh of electricity? [Assume 100% conversion efficiency.]

2 MODULE TEMPERATURE

- A module datasheet states the following module parameters: I_{sc} = 3A; V_{oc} = 20.4V; P_{max} = 45.9W; NOCT = 43°C. Determine the parameters (I_{sc}, V_{oc}, FF, P_{max}) of a module formed by 34 solar cells under the following operating conditions: G = 700W/m²; T_a = 34°C.
- 2.2 A PV module is found to operate at 60°C when $T_a = 30^{\circ}C$ and $G = 980W/m^2$. Determine the NOCT of the module.
- 2.3 Determine the variation with ambient temperature (between -25°C and +75°C) of the power of a module (under standard 1000W/m²) with 36 Si cells in series each with $I_m = 5.85A$ and $V_m = 0.5V$ at 25°C and a NOCT=45°C.

3 SIZING A GRID CONNECTED SYSTEM

Modules as those described in Table 1 are to be connected to an inverter with the specifications presented in Table 2. The modules' temperature range is -10 to 40°C.

Table 1: Module specification				
	Voc	30.2 V		
	Vm	24 V		
	lsc	8.54 A		
	lm	7.71 A		
	T coeff P	-0.485 %/ºC		

-0.104 V/ºC

Table 2: Inverter specification			
Max DC power	3200 W		
Max DC voltage	600 V		
MPP voltage range	268 - 480 V		
DC nominal voltage	350 V		
Min DC voltage	268 V		
Max input DC current	12 A		

Max output AC current | 15 A

a) Determine the module voltage range.

T coeff V

b) Determine the minimum number of modules in a string, considering a 2% drop loss in the DC cables and a 10% safety margin for the minimum inverter input voltage.

- c) Determine the maximum number of modules in a string, considering a 5% safety margin for the maximum inverter input voltage.
- d) Determine the number of strings by matching the current specifications (neglecting temperature effects).
- e) Compare the array DC power of the configuration specified in the previous questions to the max DC power of the inverter.

4 HOMEWORK

Design a grid connected system for your home using PVSYST. The meteo data should refer to your hometown. The modules' inclination and orientation is determined by the slope of your roof. Use *generic* data for the equipment considered. The PV system peak power should be that of your peak demand. The deliverable is the PVSYST technical report (no finance evaluation required) and a 1-page description of your load and building constraints, including location. Do not simulate near shading nor self-consumption.